An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow
نویسندگان
چکیده
In this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the energy-type-norm differences between the exact and the approximate nonwetting phase saturations, the global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a “mathematical” scheme derived from the weak formulation, and a phase-by-phase upstream weighting “engineering” scheme. Finally, we show how the different error components, namely the space discretization error, the time discretization error, the linearization error, the algebraic solver error, and the quadrature error can be distinguished and used for making the calculations efficient.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملAdaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem
We consider in this paper the time-dependent two-phase Stefan problem and derive a posteriori error estimates and adaptive strategies for its conforming spatial and backward Euler temporal discretizations. Regularization of the enthalpy–temperature function and iterative linearization of the arising systems of nonlinear algebraic equations are considered. Our estimators yield a guaranteed and f...
متن کاملParallel simulation of two-phase incompressible and immiscible flows in porous media using a finite volume formulation and a modified IMPES approach
In this paper a finite volume method with a “Modified Implicit Pressure, Explicit Saturation” (MIMPES) approach is used to model the 3-D incompressible and immiscible twophase flow of water and oil in heterogeneous and anisotropic porous media. A vertex centered finite volume method with an edge-based data structure is adopted to discretize both the elliptic pressure and the hyperbolic saturati...
متن کاملLocal Mass-Corrections for Continuous Pressure Approximations of Incompressible Flow
In this work, we discuss a family of finite element discretizations for the incompressible Stokes problem using continuous pressure approximations on simplicial meshes. We show that after a simple and cheap correction, the mass-fluxes obtained by the considered schemes preserve local conservation on dual cells without reducing the convergence order. This allows the direct coupling to vertex-cen...
متن کاملCell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods
A cell conservative flux recovery technique is developed here for vertexcentered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant free a posteriori error estimator which is proven to be reliable and efficient. Some numerical tests ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 83 شماره
صفحات -
تاریخ انتشار 2014